Lower Bounds on van der Waerden Numbers: Randomized- and Deterministic-Constructive

نویسندگان

  • William I. Gasarch
  • Bernhard Haeupler
چکیده

The van der Waerden number W (k, 2) is the smallest integer n such that every 2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The existence of such an n for any k is due to van der Waerden but known upper bounds on W (k, 2) are enormous. Much effort was put into developing lower bounds on W (k, 2). Most of these lower bound proofs employ the probabilistic method often in combination with the Lovász Local Lemma. While these proofs show the existence of a 2-coloring that has no monochromatic arithmetic progression of length k they provide no efficient algorithm to find such a coloring. These kind of proofs are often informally called nonconstructive in contrast to constructive proofs that provide an efficient algorithm. This paper clarifies these notions and gives definitions for deterministicand randomized-constructive proofs as different types of constructive proofs. We then survey the literature on lower bounds on W (k, 2) in this light. We show how known nonconstructive lower bound proofs based on the Lovász Local Lemma can be made randomized-constructive using the recent algorithms of Moser and Tardos. We also use a derandomization of Chandrasekaran, Goyal and Haeupler to transform these proofs into deterministic-constructive proofs. We provide greatly simplified and fully self-contained proofs and descriptions for these algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Construct Lower Bounds for Van der Waerden Numbers

We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers r, k and n a Van der Waerden certificate W (r, k, n) is a partition of {1, . . . , n} into r subsets, such that none of them contains an arithmetic progression of length k (or larger). Van der Waerden showed that given r an...

متن کامل

On the van der Waerden numbers w(2;3,t)

On the van der Waerden numbers w(2; 3, t) Abstract In this paper we present results and conjectures on the van der Waerden numbers w(2; 3, t). We have computed the exact value of the previously unknown van der Waerden number w(2; 3, 19) = 349, and we provide new lower bounds for t = 30, we conjecture these bounds to be exact. The lower bounds for w(2; 3, t) with t = 24,. .. , 30 refute the conj...

متن کامل

Avoiding triples in arithmetic progression ∗

Some patterns cannot be avoided ad infinitum. A well-known example of such a pattern is an arithmetic progression in partitions of natural numbers. We observed that in order to avoid arithmetic progressions, other patterns emerge. A visualization is presented that reveals these patterns. We capitalize on the observed patterns by constructing techniques to avoid arithmetic progressions. More for...

متن کامل

Bounds on some van der Waerden numbers

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this l...

متن کامل

Improving the Use of Cyclic Zippers in Finding Lower Bounds for van der Waerden Numbers

For integers k and l, each greater than 1, suppose that p is a prime with p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the integer segment [0, p− 1] that admits no monochromatic occurrence of l consecutive members of an arithmetic progression. Such a coloring can lead to a coloring of [0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011